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We use group theory to classify the superconducting states of systems with two orbitals on a tetragonal
lattice. The orbital part of the superconducting gap function can be either symmetric or antisymmetric. For the
orbital symmetric state, the parity is even for spin singlet and odd for spin triplet; for the orbital antisymmetric
state, the parity is odd for spin singlet and even for spin triplet. The gap basis functions are obtained with the
use of the group chain scheme by taking into account the spin-orbit coupling. In the weak pairing limit, the
orbital antisymmetric state is only stable for the degenerate orbitals. Possible application to iron-based super-
conductivity is discussed.
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I. INTRODUCTION

Symmetry plays an important role in the study of super-
conductivity. By using the symmetry of the superconducting
�SC� gap function, Ginzburg-Landau theory can be con-
structed and electromagnetic response and topological exci-
tations can be inspected. In the past decades, the symmetry
analyses to classify unconventional SC states have been fo-
cused on single-band superconductors and have shed much
light on our understanding of heavy-fermion and ruthenate
superconductors.1

Very recently, a new class of iron-based high-temperature
superconductors has been discovered with Tc as high as
above 50 K.2–9 Experimentally, spin-density wave �SDW�
order has been observed in the parent compound LaFeAsO
but vanishes upon fluorine doping where the superconductiv-
ity appears.10,11 Specific heat measurement as well as nuclear
magnetic resonance suggested line nodes of the SC gap.12–15

The transition temperature estimated based on the electron-
phonon coupling is low and unlikely to explain the observed
superconductivity.16 It has been proposed that the supercon-
ductivity is of magnetic origin and is unconventional. Local
density approximation �LDA� shows that iron’s 3d electrons
dominate the density of states near the Fermi surfaces in the
parent compound LaFeAsO.17–22 In their calculations, there
are three holelike Fermi surfaces centered at the � point and
two electronlike Fermi surfaces around the M point. By F
doping, the area of the three holelike Fermi surfaces shrinks
while the area of the two electronlike Fermi surfaces ex-
pands. The band structure obtained from the LDA may be
well modeled by a tight-binding model with two or three
orbitals �dxz, dyz, and dxy�.23–30 Because of the multiple orbit-
als in the low-energy physics, it is natural to raise the ques-
tion how to generalize the symmetry consideration from
single-band to multiband cases.

In this paper, we will generalize the symmetry analyses
developed for the single-band SC state to systems with two
orbitals. We will use group theory to classify the allowed
symmetry of the gap functions of the two-orbital SC state on
a tetragonal lattice by including a spin-orbit coupling be-
tween the paired electrons. While our focus will be on the

Fe-based compounds, some of our analyses may be applied
to more general systems with two orbitals.

We arrange this paper as the follows. In Sec. II, we dis-
cuss the symmetries governing the system and how these
symmetries affect the Hamiltonian and gap functions. In Sec.
III, we consider the possible two-orbital SC states on a te-
tragonal lattice. Section IV is devoted to summary and dis-
cussions. We also supply some appendixes for details. In
Appendix A, we show how the symmetries give rise to the
requirements to the noninteracting Hamiltonian. In Appendix
B, we specify the point group D4h of lattice according to
space group P4 /nmm. In Appendix C, we discuss how the
gap functions transfer under symmetry operations. In Appen-
dix D, we discuss the energy-gap functions in the degenerate
bands.

II. SYMMETRY OF GAP FUNCTION �(k)

We consider a tetragonal lattice, appropriate for doped
LaFeAsO. Since our primary interest is in the SC state, we
will not consider the translational symmetry broken state
such as the spin-density wave state observed in the parent
compound of LaFeAsO. The system is invariant under both
time reversal and space inversion. The inversion symmetry
suggests that the SC pairing is either even or odd in parity.
We shall assume in this paper that the time-reversal symme-
try remains unbroken.

We consider a system described by Hamiltonian

H = H0 + Hpair + Hso, �1�

where H0 is noninteracting part, Hpair is a pairing Hamil-
tonian, and Hso is the spin-orbit coupling of the Cooper pairs.
We shall consider the SC state preserves all the symmetries
in H0 except the U�1� symmetry in electric charge and the
spin rotational symmetry due to a weak Hso. We assume H0
to be given by a tight-binding Hamiltonian

H0 = �
k�1�2s

ck�1s
† �k�1�2

ck�2s, �2�

where �=1,2 are the orbital indices, which correspond to the
two orbitals 3dxz and 3dyz in Fe, s= ↑ ,↓, are the spin indices.
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Note that for LaFeAsO, the actual crystal structure has two
Fe atoms in a unit cell due to the As atomic positions, which
are allocated above and below the Fe-plane alternatively. For
convenience, here we use the extended Brillouin zone, and
the summation k is in the extended zone. H0 is invariant
under symmetry transformation. This requires certain sym-
metries on �k�1�2

, which we will discuss in detail in Appen-
dix A. We note that a more appropriate model should also
include the dxy orbital,25 but we shall leave the symmetry
analyses of the three orbitals for future study and consider a
simplified version of the two-orbital case in this paper.

The gap function of the two-orbital SC state can be gen-
erally written as

�s1s2

�1�2�k� = − �
k��3�4

s3s4

Vs2s1s3s4

�2�1�3�4�k,k���ck��3s3
c−k��4s4

� , �3�

where Vs2s1s3s4

�2�1�3�4�k ,k�� is the effective attractive interaction.
Hereafter we will use the matrix notation ��k� for the gap
function.

To classify the symmetry of the SC gap function for mul-
tiple orbitals, we recall that in the single orbital case, the
spin-orbit coupling of the Cooper pair plays an important
role to the non-s-wave superconductors, and the symmetry of
the gap function is determined by the crystal point group of
the lattice and the spin part of the gap function. In the two-
orbital system, the orbital degree of freedom is usually
coupled to the crystal momentum, hence to the spin via the
spin-orbit coupling. Therefore, the spin, spatial, and the or-
bital parts are generally all related in the gap function.

Let us first discuss the crystal symmetry. The crystal
structure of LaFeAsO is shown in Fig. 1. The tetragonal
crystal symmetry is characterized by the point group D4h.
The tetragonal point group may be specified according to the
space group P4 /nmm of the compound, and the details will
be discussed in Appendix B. There are five irreducible rep-
resentations of D4 group, denoted by �, including four one-
dimensional representations �A1, A2, B1, and B2� and one
two-dimensional �2D� representation �E�.32 The tetragonal
lattice symmetry requires H0 to be a “scalar” or A1 represen-
tation of D4. In the absence of spin-orbit coupling, spin is
rotational invariant and we have both the point-group sym-
metry and the spin rotational symmetry.33

We now discuss the orbital degrees of freedom in connec-
tion with the crystal symmetry. The two orbitals dxz and dyz
transform as E representation of D4. In general the orbital
indices dxz and dyz are not good quantum numbers because of
the mixed term of the two orbitals in H0, and the two energy
bands are not degenerate. In that case it is necessary to in-
clude the coupling of the orbital to spatial and spin degrees
of freedom.

Without loss of generality, the gap function can be written
as a linear combination of the direct products of the orbital
part � and the spin part �spin in a given representation � of
the point group D4,

���;k� = �
m,�LS,��

���,m���,m��LS,mLS;��,m��

� �spin��LS,mLS;k� � ����,m�� , �4�

where both �spin and � are 2�2 matrices, �s1s2

spin dictates the

pairing in spin space and ��1�2
dictates the pairing in orbital

space, �LS and �� are irreducible representations of D4 in
spin and orbital spaces, respectively, m, mLS, and m� are
bases of representations �, �LS, and ��, respectively.
�� ,m ��LS ,mLS ;�� ,m�� is the Clebsch-Gordan �CG� coeffi-
cient. Note that the k dependence is contained in �spin but
not in �. Here ��� ,m� is the coefficient of the basis m of the
representation �. The antisymmetric statistics of two elec-
trons requires

�T�− k� = − ��k� . �5�

Below we will first discuss �spin��LS ;k� and ����� sepa-
rately and then combine the two to form an irreducible rep-
resentation � of D4. We follow Sigrist and Ueda1 and write
�spin�k� in terms of the basis functions ��� ,m ;k� for the
spin singlet S=0 and d�� ,m ;k� for the spin triplet S=1,

�spin��,m;k� = i�	0���,m;k� + 	 · d��,m;k��	2. �6�

Here ��k� is a scalar and d�k� is a vector under the transfor-
mation of spin rotation. For this reason, it is more convenient
to use ��k� and d�k� instead of �spin�k� to classify the pair-
ing states.

Due to the fermionic antisymmetric nature, the gap func-
tion must be antisymmetric under the two-particle inter-
change or under combined operations of space inversion, in-

FIG. 1. �Color online� Lattice structure of LaFeAsO. It is a
tetragonal lattice with two Fe atoms per unit cell. The lattice con-
stants are a=b	4.03 Å and c	8.74 Å �Ref. 11�, where a is the
distance between two next-nearest-neighbor Fe atoms. �a� Origin

choice 1 of space group P4 /nmm at 4̄m2 and at �−a /4,a /4,0� from
center �2 /m�. It can be chosen either at an Fe or at an O atom. �b�
Origin choice 2 of space group P4 /nmm at center �2 /m� and at

�a /4,−a /4,0� from 4̄m2. It can be chosen either at the midpoint of
two nearest-neighbor Fe atoms or at the midpoint of two nearest-
neighbor O atoms. Here 2 /m denotes the twofold rotation C2 and
reflection m �see Appendix B for details�. The origin choices 1 and
2 are different from each other by a shift of �−a /4,a /4,0�
�Ref. 31�.
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terchange of the spin indices, and interchange of the orbital
indices of the two particles. Let P1,2 be the two-particle in-
terchange operator and Pspace , Pspin , Porbital be the interchange
operator acting on the space, spin, and orbital, respectively,
then the fermion statistics requires

P1,2 = PspacePspinPorbital = − 1. �7�

Since the system is of inversion symmetry, the pairing states
must have either even parity Pspace= +1 or odd parity
Pspace=−1. Furthermore, the total spin S of the Cooper pair is
a good number, and this is so even in the presence of Hso,
which breaks spin rotational symmetry but keeps inversion
symmetry so that it does not mix the S=1 with S=0 states.
Therefore, under the two-particle interchange, the spin part
of the gap function must be either symmetric �Pspin= +1
with S=1� or antisymmetric �Pspin=−1 with S=0�, repre-
sented by the vector d or the scalar � in Eq. �6�, respectively.
Because of the inversion and spin symmetries, we have
Porbital= 
1.

The orbital part of the pairing matrix � is spanned in the
vector space of �dxz ,dyz�, which is an irreducible representa-
tion E of the point group D4. Thus � belongs to an irreduc-
ible representation given by E � E=A1 � A2 � B1 � B2, which
are all one dimensional, hence simplifies the classification of
the pairing states. According to the CG coefficients of D4
group, up to a global factor, �=	0 in representation A1,
�=	3 in B1, and �=	1 in B2, which are all orbital
symmetric: Porbital= +1. �=	2 in A2 representation, which is
orbital antisymmetric: Porbital=−1. In brief, A1 and B1 of �
are representations for intraorbital pairing, B2 is for symmet-
ric interorbital pairing, and A2 is for antisymmetric interor-
bital pairing. For convenience, we choose � to be Hermitian
so that ��k� and d�k� will be real. �Wan and Wang34 pointed
out that Pauli matrices transfer as four one-dimensional irre-
ducible representations.�

The crystal point group of the lattice will dictate the al-
lowed symmetry in k space. The transformation of � and d
under symmetry operations can be found in Appendix C. In
Sec. III, we will study the basis functions ��� ,m ;k� and
d�� ,m ;k� and combine them with the orbital part � to ob-
tain the irreducible representations of group D4.

III. POSSIBLE TWO-ORBITAL SC STATES ON A
TETRAGONAL LATTICE

We will use the group chain scheme to study the repre-
sentation and the basis function of � and d by assuming a
spin-orbit coupling. In the group chain scheme, we begin
with a rotational invariant system in both spin and spatial
spaces. The representation of its symmetry group G can be
decoupled into a spatial part D�L� and a spin part D�S�, with L
as the relative angular momentum of the Cooper pair,

D�G� = D�L� � D�S�. �8�

In the presence of the spin-orbit coupling, D�L� and D�S� are
no longer the irreducible representation of the rotational
group, but the total angular momentum J=L+S is, and D�J�
is the corresponding irreducible representation of the rota-
tional group.

We now turn on a crystal field with tetragonal lattice sym-
metry group D4 so that the rotational group SO�3� is reduced
to D4, and D�L� � D�S� is reduced to a direct product of irre-
ducible representations �LS of group D4,

D�L� � D�S� → �
�LS

D��LS�. �9�

Including the coupling to the orbital part �, the representa-
tion D��LS� � D���� is decomposed into irreducible represen-
tations,

D��LS� � D���� = �
�

D���. �10�

D���� is one dimensional; thus these representations have a
very simple form.

Let us consider the even-parity case. From Eq. �7�, the SC
gap function can be either orbital symmetric Porbital= +1,
spin singlet, or orbital antisymmetric Porbital=−1, spin triplet.
We list the SC gap basis functions for spin singlet and spin
triplet according to the irreducible representations � in
Tables I and II, respectively. The listed even pairing states
include s wave �extended s wave�, d wave, and g wave. Here

0, 0̃, 2, 2̃, and 1 are natural notation for the five irreducible
representations of D4h; A1, A2, B1, B2, and E are Schönflies
notation; �1–5 are Koster notation. According to Eq. �3�, the
gap function of the SC state is a linear combination of the
basis functions in one irreducible representation �, and the

TABLE I. Superconducting gap basis functions ��k� on tetrag-
onal lattice for even-parity, orbital symmetric, and spin singlet pair-
ing states. � is the representation of D4. The listed notations are
natural, or Schönflies and Koster �in parentheses�. � is the orbital
representation, 	0 is the identity matrix, and 	1,2,3 are the Pauli
matrices. Listed gaps properties are for the two completely degen-
erate orbitals. kz-dependent basis functions are marked with 3D
listed for completeness.

� Basis ��k� � Gap

1,kx
2+ky

2 ;kz
2 �3D� 	0

0 �A1g , �1
+� kx

2−ky
2 	3 Line nodal or full gap

kxky 	1

kxky�kx
2−ky

2� 	0

0̃ �A2g , �2
+� kxky 	3 Line, full

kx
2−ky

2 	1

kx
2−ky

2 	0

2 �B1g , �3
+� 1,kx

2+ky
2 ;kz

2 �3D� 	3 Line, full

kxky�kx
2−ky

2� 	1

kxky 	0

2̃ �B2g , �4
+� kxky�kx

2−ky
2� 	3 Line, full

1 ,kx
2+ky

2 ;kz
2 �3D� 	1

1 �Eg , �5
+� �kxkz ,kykz� �3D� 	0 ,	3 ,	1
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basis functions belonging to different representations in �,
e.g., A1g and B2g, will not mix with each other.

We are particularly interested in 2D or quasi-2D limiting
cases, relevant to Fe-based SC compounds, where the gap
function is kz independent, and the Fermi surface is cylinder-
like. However, for completeness we also list in Tables I and
II those three-dimensional basic functions marked with 3D.
In the last column of each table, we list the allowed energy
zeroes in the quasiparticle dispersion determined by the gap
functions for the special case that the two energy bands are
completely degenerate. The detailed calculations for the qua-
siparticle energies in the degenerate cases are given in Ap-
pendix D. We will discuss the quasiparticle properties for the
nondegenerate cases in the discussion section below.

Similarly, for the odd-parity pairing Pspace=−1, we can
have either orbital antisymmetric Porbital=−1, spin singlet, or
orbital symmetric Porbital=1, spin triplet, which are listed in
Tables III and IV, respectively. For the spin triplet, we list
p-wave, f-wave, and h-wave states.

IV. SUMMARY AND DISCUSSIONS

In summary, we have studied the pairing symmetry of the
two-orbital superconducting states on a tetragonal lattice.
Based on the symmetry consideration, we have classified
symmetry allowed pairing states with the space inversion,
spin, orbital, and the lattice symmetries by including a spin-
orbit coupling. In addition to the even parity for the spin
singlet and odd parity for the spin triplet pairings, familiar in
the single-band superconducting gap functions, which corre-

sponds to orbital symmetric pairing in the two-orbital sys-
tems, there are also even parity for spin triplet and odd parity
for the spin singlet pairings, corresponding to orbital anti-
symmetric pairing. The symmetry allowed gap basis func-
tions are listed in Tables I–IV in the text. In the orbital sym-
metric states, the gap basis functions within the same
representation of the point group but with different orbital
representations are allowed to combine to form a gap func-
tion.

Below we shall discuss some limiting cases. First, we
consider the weak pairing coupling limit. In this case, we can
diagonalize H0 first to obtain the two energy bands. Hpair in
Eq. �1� is to induce a pairing of electrons near the Fermi
surfaces within a very small energy window. If the two en-
ergy bands are not degenerate, then the two Fermi surfaces
do not coincide with each other, and the pairing will only
occur between electrons in the same band since the energy
mismatch of the two electrons with opposite momentum in
the two bands will not lead to the SC instability in the weak-
coupling limit. The issue is then reduced to the two decou-
pled single-band problem. Because the intraband pairing is
between symmetric orbitals, all the states with orbital anti-
symmetric pairings such as those listed in Tables II and III
will not be realized. There is a one-to-one correspondence
between the present work and the single-band analysis.1 In
terms of the orbital picture, the intraband pairing gap func-
tion is described by a linear combination of the orbital rep-
resentations 	0 ,	1 ,	3 in each representation of �.

The strong pairing coupling case is more complicated and
possibly more interesting. The symmetry analyses we out-
lined in this paper may serve as a starting point. The pairing
interaction may overcome the energy mismatch of the paired
interband electrons to lead to the superconductivity. In a re-

TABLE II. Superconducting gap basis functions d�k� on tetrag-
onal lattice for even-parity, orbital antisymmetric, and spin triplet
pairing states. Notations are the same as in Table I.

� Basis d�k� � Gap

0 �A1g , �1
+� ẑ , �kx

2+ky
2�ẑ , �kx

4+ky
4�ẑ ,kx

2ky
2ẑ 	2 Line, full

0̃ �A2g , �2
+� kz�kxŷ−kyx̂� �3D� 	2

2 �B1g , �3
+� �kx

2−ky
2�ẑ ;kz�kxx̂−kyŷ� �3D� 	2 Line

2̃ �B2g , �4
+� kxkyẑ ;kz�kxx̂+kyŷ� �3D� 	2 Line

1 �Eg , �5
+� �x̂ , ŷ�, �kx

2x̂ ,kx
2ŷ�, �ky

2x̂ ,ky
2ŷ�,

�kxkyx̂ ,kxkyŷ�; �kz
2x̂ ,kz

2ŷ�,
�kxkzẑ ,kykzẑ� �3D�

	2 Line, full

TABLE III. Superconducting gap basis functions ��k� on tetrag-
onal lattice for odd-parity, orbital antisymmetric, and spin singlet
pairing state. Notations are the same as in Table I.

� Basis ��k� � Gap

0 �A1u , �1
−� kz �3D� 	2

0̃ �A2u , �2
−� kz�kx

4−6kx
2ky

2+ky
4� �3D� 	2

2 �B1u , �3
−� kz�kx

2−ky
2� �3D� 	2

2̃ �B2u , �4
−� kxkykz �3D� 	2

1 �Eu , �5
−� �kx ,ky� 	2 Line

TABLE IV. Superconducting gap basis functions d�k� on tetrag-
onal lattice for odd-parity, orbital symmetric, and spin triplet pair-
ing states.

� Basis d�k� � Gap

kxx̂+kyŷ ;kzẑ �3D� 	0

0 �A1u , �1
−� kxx̂−kyŷ 	3 Line, full

kyx̂+kxŷ 	1

kyx̂−kxŷ 	0

0̃ �A2u , �2
−� kyx̂+kxŷ 	3 Line, full

kxx̂−kyŷ 	1

kxx̂−kyŷ 	0

2 �B1u , �3
−� kxx̂+kyŷ ;kzẑ �3D� 	3 Line, full

kyx̂−kxŷ 	1

kyx̂+kxŷ 	0

2̃ �B2u , �4
−� kyx̂−kxŷ 	3 Line, full

kxx̂+kyŷ ;kzẑ �3D� 	1

1 �Eu , �5
−� �kxẑ ,kyẑ� ; �kzx̂ ,kzŷ� �3D� 	0 ,	3 ,	1 Line
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cent exact diagonalization calculation for a two-orbital Hub-
bard model on a small size system, Daghofer et al.35 found
an interorbital pairing with spin triplet and even parity with
the gap function to be cos kx+cos ky. Their pairing state cor-
responds to Eg representation in Table II and provides a con-
crete example of the orbital antisymmetric pairing state.
Generally we may argue that the gap structure will be gap-
less with Fermi pockets for 2D systems unless the pairing
coupling is strong enough to overcome all the mismatched
paired electrons in the momentum space. An example was
given by Dai et al.23 and also discussed by Wan et al.34 This
seems to essentially rule out any possibility for line nodes in
the orbital antisymmetric pairing state in the strong pairing
coupling limit. A nodal in quasiparticle energy requires the
gap function to vanish. As a result, the pairing strength near
this nodal will not be strong enough to overcome the energy
mismatch of the interband paired electrons. Therefore, a
nodal in quasiparticle energy implies a Fermi pocket in this
case.

Another interesting limit is the two orbitals are com-
pletely degenerate: �k�1,�2

=�k��1,�2
. The system has an or-

bital SU�2� symmetry. In this case, our analyses are most
relevant, and all the classified states listed in Tables I–IV
could be stable even in the weak pairing interaction. Because
of the orientational dependence of the orbitals in crystal,
such degeneracies may not be easy to realize. A possible
realization is on the materials with twofold pseudospin sym-
metry or two-valley degeneracy such as in graphene. While
the point group will depend on the precise crystal symmetry
concerned, some general features discussed in this paper may
be applied to those systems.

We now discuss the band structure in the extended zone
and the reduced zone. Because of the positions of As atoms,
the translational lattice symmetry is reduced and the Bril-
louine zone is halved. In general, such a translational sym-
metry reduction may lead to hopping matrix between mo-
mentum k and k+Q in the extended zone, with Q
= �� ,�� /a� and a�=a /
2 is the lattice constant of reduced
unit cell. However, for the two orbitals dxz and dyz, the point-
group symmetry prohibits the hybridization between states at
k and k+Q if we only consider intralayer hopping. The
tight-binding Hamiltonian adopted by both Raghu et al.27

and Lee and Wen25 explicitly illustrate the vanishing of the
mixing term. Therefore, we may discuss the SC symmetry
using the extended zone and using H0 given in Eq. �2�. In the
extended zone, there is only one Fermi point for each k;
hence the bands are not degenerate. In the weak pairing cou-
pling limit, all the orbital antisymmetric pairing states will be
irrelevant, and the weak-coupling theory will naturally lead
to the orbital symmetric states.

Near the completion of the present work, we learned of
the similar work by Wan and Wang34 who considered SC
symmetry for two-orbital pairing Hamiltonian. Our results
are similar to theirs with the difference that we have included
a spin-orbit coupling term in our group theory analysis,
while this term was not explicitly included in Ref. 34. As a
result, our classification for the spin triplet states is not the
same as theirs. Such difference may be amplified when we
discuss some behaviors related to spin degrees of freedom.
We also note that similar group theory analysis were carried

out for the two-band pairing Hamiltonian by Wang et al.36

Since they adopted the bands instead of the orbitals, a direct
comparison is not apparent. We become aware of another
related work37 after completing the present work too.
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APPENDIX A: SYMMETRY OF �k�1�2
IN EQUATION (2)

In this appendix, we will discuss the symmetry require-
ment of �k�1�2

. The noninteracting Hamiltonian given by Eq.
�2� should keep invariant under any symmetry transforma-
tion of point group D4; hence H0 belongs to the representa-
tion A1. This symmetry requirement will affect the choice of

�k�1�2
. For convenience, we use the 2�2 matrix form �̂k in

orbital space; thus �̂k can be rewritten in terms of Pauli ma-

trices, �̂k=�k
0	0+�k

1	1+�k
2	2+�k

3	3. Similarly to the case of
�, 
ks

† 	0
ks, 
ks
† 	1
ks, 
ks

† 	2
ks, and 
ks
† 	3
ks transform

as A1, B2, A2, and B1, respectively, where 
ks= �ck1 ,ck2�T.
Using the CG coefficients of D4−C4 group chain,32 we find
that �k

0, �k
1, �k

2, and �k
3 transform as A1, B2, A2, and B1, re-

spectively. Some examples of �k
0,1,2,3 are shown in the fol-

lowing:

�k
0 = 1,cos kx + cos ky,cos kxcos ky ,

�k
1 = sin kx sin ky ,

�k
2 = sin kx sin ky�cos kx − cos ky� ,

�k
3 = cos kx − cos ky .

APPENDIX B: POINT GROUP D4h

Here we would like to specify the tetragonal point group
according to the LaFeAsO space group P4 /nmm.31 In real
space, the point group is neither usual D4h=D4 � 	h nor
usual D4 generated by �C4z ,C2y�, where 	h is the reflection
refer to xy plane, C4z is the fourfold rotation around the z
axis, and C2y is the twofold rotation around the y axis, where
�x ,y ,z� is specified in Fig. 2. However, it contains two sub-
groups, which refer to two different origin choices of the
lattice. One is a subgroup of D4h generated by
�C4z	h ,C2y	h�, which is also a D4 group �or to be precise,
D2d, an isomorphic group to D4� with origin choice 1 as
shown in Figs. 1�a� and 2�a�. The other subgroup is the direct
product of inversion symmetry group I and cyclic group C2xy
with origin choice 2 as shown in Figs. 1�b� and 2�b�. The
transformation of �x ,y ,z� under these symmetry operations
can be found in Tables V and VI. Hence in k space, it is still
a tetragonal point group D4h.

There are five irreducible representations of D4 group;
four of them, A1, A2, B1, and B2 are one-dimensional repre-
sentations, and one of them E is a two-dimensional represen-
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tation. All these five representations are representations of
group D4h too. However, there are two two-dimensional ir-
reducible representations E� and E� of D4h group, neither of
them is the representation of group D4. Naively, E� and E�
can be viewed as subrepresentations of two irreducible rep-
resentations of group SU�2�, J=1 /2 and J=3 /2, respectively.
Since the representations E� and E� cannot result in quadratic
terms in Hamiltonian or Ginzburg-Landau free energy, we
will not discuss them in this paper.

APPENDIX C: TRANSFORMATION OF GAP FUNCTIONS

It is not ��k� but ��k� and d�k� transform as representa-
tions of symmetry group. In this appendix, we list the trans-
formations of ��k� and d�k� under various symmetry opera-
tions. First, under a point-group transformation g, ��k� and
d�k� transform as

g��k� = ��D�G�
− �g�k� ,

gd�k� = D�G�
+ �g�d�D�G�

− �g�k� , �C1�

where D�G�

 �g� is the representation in three-dimensional

space with positive �spin space� or negative �k space�, re-

spectively. Second, time-reversal transformations of ��k�
and d�k� take the forms

K��k� = ���− k�, Kd�k� = − d��− k� . �C2�

The antisymmetric nature of Fermion systems �see Eq. �5��
will lead to

��− k� = ��k�, d�− k� = − d�k� �C3�

for symmetric � and

��− k� = − ��k�, d�− k� = d�k� �C4�

for antisymmetric �. Hence, combining the above and the
Hermitian choice of �’s, the time-reversal invariance condi-
tions for ��k� and d�k� become

���k� = ��k�, d��k� = d�k� �C5�

since under time-reversal transformation, � transforms as

K� = ��. �C6�

APPENDIX D: ENERGY GAP FUNCTIONS IN THE
DEGENERATE BANDS

The energy gap of the superconducting states indeed de-
pends on the details of interaction, especially, depends on the
ratio of �t /�, where �t is the energy scale of the splitting of
two bands and � is the energy scale of pairing potential. In
the “strong pairing coupling” limit �t��, we expect the en-
ergy gap is close to �t=0 case; say, two bands are degener-
ate. A small perturbation proportional to �t /� will not change
the energy gap very much, e.g., close the full gap or change
from full gap to line nodal gap. In the weak pairing coupling
limit ���t, the situation may be very different from strong-
coupling limit, which is discussed in Ref. 34 so that we will
focus on the strong-coupling limit and assume two degener-
ate bands in the following.

Due to two degenerate bands, the effective mean-field
Hamiltonian in k space can be written as an 8�8 matrix,

Ĥk = 
�k	0 � 	0 ��k�
�†�k� − �k	0 � 	0

� , �D1�

with the basis ck
= �ck↑1 ,ck↑2 ,ck↓1 ,ck↓2 ,c−k↑1

† ,c−k↑2
† ,c−k↓1

† ,c−k↓2
† �T. The indices

in the 4�4 matrices ��k� and �k	0 � 	0 are arranged as
follows: by direct products the former two indices denote
spin space and the later two denote two orbitals. It is easy to
know the energy dispersion,

TABLE V. Eight symmetry operations of D2d �an isomorphic
group to D4� will generate eight general positions, where “general”
is defined as the following: a set of symmetrical equivalent points is
said to be in “general position” if each of its points is left invariant
only by the identity operation but by no other symmetry operation
of the space group. The origin choice is 1.

Group element General position

E �x ,y ,z�
C4z	h �y ,−x ,−z�
�C4z	h�2 �−x ,−y ,z�
�C4z	h�3 �−y ,x ,−z�
C2y	h �−x ,y ,z�
C2y	hC4z	h �−y ,−x ,−z�
C2y	h�C4z	h�2 �x ,−y ,z�
C2y	h�C4z	h�3 �y ,x ,−z�

TABLE VI. Four symmetry operations and corresponding gen-
eral positions of group I�C2xy. The origin choice is 2.

Group element General position

E �x ,y ,z�
Ci �−x ,−y ,−z�
C2xy �y ,x ,z�
CiC2xy �−y ,−x ,−z�

Fe

As
x

y
xy

(a) (b)

FIG. 2. �Color online� FeAs layer and specification of �x ,y ,z�.
xy plane consisting of Fe atoms is shown in �a� and �b� with differ-
ent origin choices. The z axis is perpendicular to the Fe plane. “+”
denotes an As atom above the Fe plane, while “−” denotes an As
atom below the Fe plane. �a� Origin choice 1 and �b� origin choice
2 �also see Fig. 1�.
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Ek� = 
 
�k
2 + �k�

2 , �D2�

where �k�
2 is one of the eigenvalues of the matrix

��k��†�k�. For degenerate bands, the minimum of ��k�� is
the energy gap. For simplicity, we will focus on the
kz-independent pairing with a cylinderlike Fermi surface
which is the case of doped LaFeAsO most likely.

At first, we will consider the even-parity, orbital antisym-
metric, and spin triplet pairing states in Table II. Orbital an-
tisymmetric states have only one component 	2 in the �
part. Gap function is of the form ��k�= i�	 ·d�k��	2 � 	2,
thus �k�

2 = �d�2
 �d�d��. For the time-reversal invariant
state, d=d�, the gapless condition follows as �d�2=0. For B1g
and B2g states, they are d-wave states and have line nodal
gap at Fermi surfaces. A1g states can be of either s wave or

extended s wave. The s-wave state is of full gap while the
extended s-wave state possibly has line nodal gap at Fermi
surface, e.g., the state d�k�=cos kx cos kyẑ. The Eg represen-
tation involves s-wave, extended s-wave, and d-wave states.
The s-wave state is fully gapful, the d-wave state has line
nodal gap, and the extended s-wave state can be either fully
gapful or of line nodal gap.

Then we consider the odd-parity, orbital symmetric, and
spin triplet pairing states in Table IV. Orbital symmetric
states have three components 	0,1,3 in the � part. Gap func-
tion can be written as

��k� = i�	 · d0�k��	2 � 	0 + i�	 · d1�k��	2 � 	1

+ i�	 · d3�k��	2 � 	3, �D3�

thus

��k��†�k� = ���d0�2 + �d1�2 + �d3�2�	0 + i�d0 � d0
� + d1 � d1

� + d3 � d3
�� · 	� � 	0

+ ��d0 · d1
� + d1 · d0

��	0 + i�d0 � d1
� + d1 � d0

�� · 	� � 	1 + ��d0 · d3
� + d3 · d0

��	0 + i�d0 � d3
� + d3 � d0

�� · 	� � 	3

+ ��d1 � d3
� − d3 � d1

�� · 	 − i�d1 · d3
� − d3 · d1

��	0� � 	2. �D4�

For a time-reversal invariant state, di
��k�=di�k�, i=0,1 ,3, so that the above can be simplified as

��k��†�k� = �d0
2 + d1

2 + d3
2�	0 � 	0 + 2�d0 · d1�	0 � 	1 + 2�d0 · d3�	0 � 	3 + 2�d1 � d3� · 	 � 	2. �D5�

We obtain from the above

�k�
2 = �d0

2 + d1
2 + d3

2� 
 2
�d0 · d1�2 + �d0 · d3�2 + �d1 � d3�2. �D6�

Gapless condition reads

d0
2 + d1

2 + d3
2 = 2
�d0 · d1�2 + �d0 · d3�2 + �d1 � d3�2. �D7�

Careful analysis shows that node can appear only when at least one of �d0�, �d1�, and �d3� vanishes so that Eu states in Table IV
are of line nodal gap. The other four representations A1u, A2u, B1u, and B2u can be of either line nodal or full gap. For
example, for an A1u states in Table IV which consists of two components in the � part, d0�k�=sin kxx̂+sin kyŷ,
d3�k�=sin kxx̂−sin kyŷ, and d1�k�=0, nodal lines will appear at sin kx=0 and sin ky =0. Moreover, any A1u state in Table IV
which consists of only one component in the � part is of full gap.

Similar consideration will lead to the results for spin singlet states shown in Tables I and III. Of course, when the ratio �t /�
becomes large, the situation may change. This change strongly depends on the details of both pairing states and the Hamil-
tonian. For example, for an s wave with d�k�= ẑ and �=	2, Fermi pockets may appear when �t and � are comparable.
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